DDAH1 mediates gastric cancer cell invasion and metastasis via Wnt/β‐catenin signaling pathway

نویسندگان

  • Jianxin Ye
  • Jie Xu
  • Yun Li
  • Qiang Huang
  • Jinsheng Huang
  • Jinzhou Wang
  • Wenjing Zhong
  • Xinjian Lin
  • Wannan Chen
  • Xu Lin
چکیده

Gastric cancer (GC) represents the fourth most common malignant neoplasm and the second leading cause of cancer death. Despite therapeutic advances in recent decades, the clinical outcome remains dismal owing to the fact that most patients with GC show advanced disease at diagnosis and current chemotherapy only confers a modest survival advantage. Identification of key molecular signaling pathways involved in gastric carcinogenesis and progression would aid in early diagnosis and provide a rational design for targeted therapies in selected patients with advanced GC, to improve their outcome. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is the main enzyme that can degrade asymmetric dimethylarginine, an endogenous nitric oxide synthase (NOS) inhibitor. Increased DDAH1 expression and NO production have been linked to multiple pathological conditions including cancer. However, the prognostic significance of DDAH1 in patients with GC and its function in GC progression remain undefined. In this study, we found that downregulation of DDAH1 was frequently detected in GC tissues and strongly correlated with more aggressive phenotypes and poor prognosis. Functional assays confirmed that forced expression of DDAH1 in the GC cells suppressed cell migration and invasion in vitro, as well as metastatic potential in vivo. DDAH1 overexpression inhibited the epithelial-mesenchymal transition process by increasing β-catenin degradation through the attenuation of Wnt/GSK-3β signaling. In contrast, knockdown of DDAH1 produced the opposite effect. These findings suggest that DDAH1 functions as a tumor suppressor in GC and may be exploited as a diagnostic and prognostic biomarker for GC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway

Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway.Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group...

متن کامل

Molecular Signaling in Tumorigenesis of Gastric Cancer

Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens...

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis.

DIXDC1 (Dishevelled-Axin domain containing 1) is a DIX (Dishevelled-Axin) domain-possessing protein that promotes colon cancer cell proliferation and increases the invasion and migration ability of non-small-cell lung cancer via the PI3K pathway. As a positive regulator of the Wnt/β-catenin pathway, the biological role of DIXDC1 in human gastric cancer and the relationship between DIXDC1 and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017